
Some general relations between dressed self-avoiding walks and percolation perimeters on

lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 501

(http://iopscience.iop.org/0305-4470/21/2/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 21 (1988)  501-512. Printed in the U K  
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Abstract. We show for some simple examples the relations between some recently proposed 
dressed self-avoiding walks and site percolation. Connection between matching pairs and 
dressed walk generators is specified and some features of the corresponding bond percola- 
tion problem are given. The case of surface generators for dressed self-avoiding surfaces 
is briefly examined. 

1. Introduction 

The self-avoiding random walks (SAW) are known (de Gennes 1979) to be a convenient 
model for linear polymers with excluded volume interaction. Many extensions of the 
SAW have recently appeared, in particular in relation to kinetic growing models. Majid 
et a1 (1984) discussed the kinetic growing walk (KGW) where a random walker can 
only step to the sites not visited before. Ziff et a1 (1984) introduced a two-sided walk 
which generates the perimeters of site percolation clusters and Weinrib and Trugman 
(1985) showed that these perimeter walks present the same asymptotic behaviour as 
two other practically equivalent KGU’, their smart kinetic walk (SKW) and the indefinitely 
growing self-avoiding walk ( IGSAW) (Kremer and Lyklema 1985). The perimeter walks 
of Ziff et a1 (1984) appeared to be a particular case of a more general class of 
self-avoiding walks described in Gouyet et a1 (1987) which we called dressed self- 
avoiding walks (DSAW). All these walks have the same fractal dimension dH =: (Sapoval 
er a1 1985, Bunde and Gouyet 1985, Gouyet et al 1986,1987) if they are not submitted 
to ‘too strong constraints’, i.e. if there is no long-range correlation between steps. 

The purpose of this paper is to show for some simple examples the relations that 
exist between such DSAW and an underlying percolation problem. In particular any 
perimeter walk can be considered as a DSAW. In  this case the generators of the walk 
are directly related to the matching-pair structure of the considered percolation prob- 
lem. But the reciprocal is not true-all dressed self-avoiding walks cannot be associated 
with a percolation problem. This will become clear in S2 for some examples. 

Dressed self-avoiding surfaces and a three-dimensional generalisation of the DSAW 

are briefly introduced in § 3. In addition we briefly examine in appendix 1 the case 
of perimeter generation in the bond percolation problem; in this case the perimeter is 
not associated with a DSAW and is more similar to a ‘squig’ fractal (Mandelbrot 1984). 
Appendix 2 is devoted to some remarks on approximate calculations of percolation 
thresholds from DSAW generators. 
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2. General considerations on DSAW generators on a lattice 

A general definition of a DSAW can be found in Gouyet et a1 (1987). Given a 2~ graph 
L, the walk takes place on the dual graph L D  and at each step the adjacent sites on 
L are occupied (dressed), for instance, by a white particle on the left and a black 
particle on the right (see figure 1). The walk is then continued in such a way that 
white (black) particles always remain on the left (right) of the walk. The walker cannot 
walk again on its own path. If no other possibilities occur then the walk closes. After 
a sufficient number of steps, when no particular constraint is added, all the walks 
become rings. 

I 
Figure 1. This figure represents a dressed self-avoiding walk on an arbitrary random lattice 
L (full lines). The successive steps of the walk are arrows placed on the dual lattice L D  
(broken lines). The arrows are dressed with black and white particles (see text). 

A dressed step e,, will simply be a step of the walk dressed with one white particle 
on its left and one black particle on its right, n indicating the position of the step in 
the walk: 

B A 

A generator G = {enwlr e,,} of a DSAW will then be formed by at least two successive 
dressed steps, respectively the entrance door and exit door of a polygon on the lattice 
L. Except for the case of triangular polygons, occupation of the corners and connections 
between these corners must be specified. Depending on the lattice L, different 
possibilities can occur. Some of them have been described in Gouyet et a1 (1987) in 
the case of the square lattice. Here we will examine these possibilities in more detail. 

(a )  The triangular lattice. This case has already been studied in the literature, at least 
under equivalent forms (Weinrib and Trugman 1985). The generators take here their 
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simplest structure. 
two successive dressed steps G, = { e n - , ,  e n } ,  

Only two generators can be constructed, completely defined by 

G .  62 

The arrows are on the honeycomb dual lattice and the walker can either turn right 
or left with an  angle (en-l ,  e,)  = 2 x m / 3  with rn = *$. The application of a new generator 
G, or  G, at time n + 1 consists only, if the place is free, in adding a black or a white 
particle. If black particles are added with probability p ,  it  is known (Ziff et a1 1984) 
that the walker generates the perimeters of percolation clusters at a concentration p 
for the triangular lattice with first-neighbour connection. At each step cne  can associate 
with each value of m a n  increase in the number SN,A of black points and SN,, of 
white points. Then for the triangular lattice 

Now when the walker progresses the added site A (black) or B (white) is either a new 
site or an already created one. In the last case the walker is not free to walk right or 
left: the walk is intrinsically self-avoiding. Moreover it is quite easy to show that a 
DSAW never finishes abruptly like in an ordinary self-avoiding walk. We always obtain 
closed loops which delimit finite clusters. Nevertheless it is possible to build in a 
systematic way an  infinite walk using an additional constraint similar to that used by 
Weinrib and  Trugman (1985) or Kremer and Lyklema (1985). 

(b) The square lattice. Here the different possible sets of two successive generators 
must correspond to the four possibilities (figure 2 )  of putting black and white particles 
on the upper corners of a square (the lower side is always en-l  and always has a white 
particle on the left and a black on the right). 

One sees in this case that the definition of a generator G must be completed. A 
generator defined only with two successive steps is not sufficient for the square lattice 
as one corner is undetermined and this may correspond to a different evolution of the 
walk. 

Moreover on each polygon of the lattice we have to consider all the possible 
connections between the sites (first- and second-neighbour connections in the square 
lattice case). The generators are then the set of two successive steps on which connec- 
tions between identical particles have been added. These connections avoid indetermi- 
nation. 

For the square lattice the four possibilities of setting black and  white particles on 
the two remaining corners lead to five distinct possible generators shown on the right 
in figure 2 .  The generators drawn in figure 2 ( b )  contain second-neighbour connections 
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l a 1  

Figure 2. On a square lattice, two dressed steps are not sufficient to completely define the 
generators. I n  this figure we show on the left the different occupations of the corners of 
a square by black and white particles and the possible (first- and second-) neighbour 
connections (broken lines) between these corners. All the corresponding possible generators 
are represented on the right-hand side. 

and are again found in figure 2 ( c )  (second-neighbour connection between white 
particles) and figure 2( d )  (second-neighbour connection between black particles). The 
upper corner which is not connected is then free (black or white) when the DSAW grows. 

These five generators give all the possible DSAW on a square lattice. In figure 3 ( a )  
the only three generators of perimeters needed in the case of the percolation problem 
of black A particles with first-neighbour connection (‘A’ lattice) are represented at the 
bottom of the drawing. The white particles (‘B’ lattice) are connected via first and 
second neighbours. ‘A’ and ‘B’ lattices form a matching pair  (see Sykes and Essam 
1964). The corresponding percolation problem is shown above the set of generators. 
In figure 3( b )  we have represented the same distribution of particles but now associated 
with the set of generators with first-neighbour connection between white ‘B’ particles 
and first and second between black ‘A’ particles. 

If we now choose all the five generators (figure 3(c)) a difficulty appears when we 
are faced with case ( b )  in figure 2 which shows two conflicting possibilities. Hence 
let p 2  be the probability that the connection is second neighbour between the black 
‘A’ particles (and 1 - p 2  between the white). Then the set of generators again corre- 
sponds to a percolation problem with a statistical second-neighbour connection. 

The percolation threshold varies continuously from pcA = 0.5928 when p z  = 0 to 
p c B  = 1 - pcA -- 0.4072 when p z  = 1 (a  relation which has no reason to be linear in p 2 ) .  
The lattice pair { A ,  B }  may be called a statistical matching pair. We can also consider 
this case as a site-bond percolation problem with a critical line of percolation thresh- 
olds. The set of generators is symmetrical with respect to the permutation ( A ,  B )  only 
when p z  = 4. In this case { A ,  B }  may be called a statistical self-matching pair and its 
percolation threshold is at p c  = i. 
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I O )  

Figure 3. On these lattice structures as in all the following, any admitted connection 
between the black particles have been indicated with a broken line. On all figures associated 
with the percolation problem we have chosen for comparison the same distribution of 
black and white particles. ( a )  shows the first-neighbour connection square lattice, with at 
the bottom the set of perimeter generators. ( b )  shows the first- and second-neighbour case. 
( c )  shows the case where second-neighbour connection is admitted for both black and 
white particles. A conflict appears which leads to choose some generators at random. 
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It is in fact possible to choose the generators in a manner depending on more 
complicated underlying connections of the lattice. Figures 4(a )  and ( b )  show two 
examples of self-matching pairs, for which the set of generators is symmetrical. The 
first figure ( a )  represents the lattice site problem isomorphic to the bond problem 
( p;Ond = I ) ,  while ( b )  represents the fully triangulated lattice. 

If we keep in the generator set only the two generators with first-neighbour 
connection (figure 5(a)), it is no longer possible to consider them as perimeter 
generators. In other words the associated DSAW do not correspond to a percolation 
problem (figure 5(  b ) )  due to the strong correlation between neighbouring sites generated 
by the walk. 

However, if the generators are those with second-neighbour connections the DSAW 

is not associated with site percolation (figure 6 a ) ) ,  but with two identical bond 
percolations (figure 6( b ) )  on two imbricated independent square lattices, for which 
indeed pkond = f. 

(c)  Other lattices. The same ideas can be applied to other 2~ lattices. For a regular 
lattice structure, the rotation angle between two successive steps ( e n - , ,  e,,) may be 
written in a general compact form 

(en-,, e n ) = 2 . n m / ( 2 S + 2 )  m E { - S , S }  

where 2 s  + 2 is the number of faces of the elementary polygon, 

for the triangular lattice 

for the hexagonal lattice. 

For instance, for the honeycomb lattice the generators with first-neighbour connec- 

2 s + 2 =  4 for the square lattice i: 
tion between the black sites can be classified according to table 1. 

Table 1. Increase in the number of black ( A )  and white ( E )  particles at each step on the 
honeycomb lattice for the different possible directions of the walk. 

m 2 1 0 -1 -2 

8 " 4 3 2 1 0 
8" 0 1 1 1 1 

For the KagomC lattice (figure 7 )  the ten generators are simple combinations of 
triangular and honeycomb generators. These kinds of frontier-generating walk have 
been used by Ziff and Sapoval (1986) to check the efficiency of determining the 
percolation threshold by the gradient method (Rosso et a1 1985). 

3. The 3~ case: dressed self-avoiding surfaces 

The above considerations can be generalised to three dimensions. The dressed self- 
avoiding surfaces (DSAS) are built with plaquettes sitting on the dual graph of the 
lattice considered. Each plaquette can be oriented with a normal vector which will 
then be dressed with a white particle on one extremity and a black on the other (figure 
8). The DSAS separates the white particle region from the black one. As we no longer 
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Figure 4. In these two cases of self-matching lattices, the connections differ from one 
square to the other. This leads to generators which must fit with the underlying connections 
of the lattice and along the walk these connections changes. This explains the higher 
number of generators. ( a )  represents the lattice site problem isomorphic to the bond 
problem. ( b )  represents the fully triangulated lattice. 

Figure 5. In ( a )  the distribution of points is at random, identical to the preceding examples, 
but here with first-neighbour connections between both black and white particles. The 
corresponding generators are inadequate to generate cluster perimeters of this system. In 
contrast they generate DSAW shown in ( b ) ,  which clearly do not correspond to a random 
distribution of particles. 
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Figure 6. This figure is drawn in the same spirit as figure 5. ( a )  shows the random 
distribution, while we can see in ( b )  that the perimeters correspond to a double bond- 
percolation problem. 

have a walk we cannot define a simple set of generators and we must proceed by 
successive addition of dressed plaquettes. 

Figure 9 shows the simple cubic lattice case. The lattice ‘A’ has a first-neighbour 
connection between black particles while the ‘B’  lattice needs first-, second- and third- 
neighbour connections between the white particles. To generate a DSAS one starts from 
a dressed plaquette (figure 8) which represents the seed. Addition of a second dressed 
plaquette will consist in adding a plaquette with one side in common with the seed 
(3 x 4 possibilities) or with one corner in common and two black first-neighour sites 
(2 x 4 possibilities). Hence, while the black sites are first neighbours, the white sites 
can be first or second (by addition of a plaquette with one common side) or third 
neighbours (by addition of a plaquette with one common corner), as is shown in figure 
9. The three first cases in figure 9 are, in fact, very similar to the 2~ case because all 
the particles remain in a plane. But this is no longer the case with the fourth case. 

. .  
1. * 

. . . ...... ,)b\ +. ..... -0.. 

. . . . . . . .  ’.+. . 

. .  

Figure 7. We have represented here only one of the possible generators for the Kagomi 
lattice. 
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6 
Figure 8. A dressed plaquette is the generalisation in three dimensions of the 2~ dressed 
step. It separates interior and exterior of a 3 D  percolation cluster. For the simple cubic 
lattice the plaquette is a square.  

i 

Figure 9. This figure shows the different possibilities of associating dressed plaquettes in 
the simple cubic lattice case. 

New dressed plaquettes are added following one of the four possibilities in figure 9. 
In figure 10 we show addition as an example of three and five plaquettes. 

The manner in which the dressed plaquettes are added is important in the DSAS 

case. One way is to consider the perimeter of the cluster formed with the plaquettes 
as the set of ‘growth sides and corners’ of the surface. If the plaquettes are added at 
random along the perimeter, the generated surface will certainly not be the hull of a 
percolation cluster (as it is in the case in Wilke et a1 (1985) and KertCsz and Herrmann 
(1985)). 

To be sure to generate a three-dimensional hull a possible way consists in filling 
first the growing sides and corners situated at the shortest distance from the seed 
generator. Independence in the occupation of different sites by black or white particles 
ensures that the hull correctly grows, as addition of dressed plaquettes can be done 
in any arbitrary order. 

4. Conclusion 

There are various motivations to consider dressed self-avoiding walks. One motivation 
is that it allows one to directly build up  the external surface (or hull) of percolation 
clusters (Gouyet et a1 1987). It is then related to the study of diffusion fronts of the 

U 

Figure 10. This shows some different simple combinations of dressed plaquettes. 
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hard-core particle lattice gas (Sapoval et a1 1985). A second very important motivation 
is that it gives the fastest (and the most accurate) way to determine numerically a 
percolation threshold (Rosso et a1 1985, Ziff and Sapoval 1986). The DSAW is, in this 
case, generated with a vanishing gradient of probability. A third motivation is that it 
contains enough flexibility to allow quite general random walks (Gouyet e? a1 1987) 
which may be used in relation with polymer statistics. Last, but not least, the DSAW 

characterises the percolation problem in general, beyond the properties of the hull 
studied so far. Its extension to dressed self-avoiding surfaces appears to be very 
interesting. It will be the subject of further studies. 
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Appendix 1. Relation with perimeters of the bond percolation problem 

Up to now all studies on perimeters walks have been devoted to perimeters of clusters 
of the site percolation problem. What then are the equivalent walks for the bond 
percolation case? 

In site percolation problems the perimeters are associated with walks on the dual 
lattice L D  and the corresponding A and B sites on L belong to matching pairs. In 

>\ . . . . . . . . . /+ . . . . . . . . /f .... _ _ _ _  1 

Figure 11. ( a )  The three dominos necessary to generate the cluster perimeters in the 
honeycomb bond percolation problem. The arrows follow the perimeter itself and a part 
of perimeter can be \kited at most two times in two opposite directions. The second 
generator corresponds to the extremity of a dangling bond run over in both directions. 
( b )  This is the dual problem of that ( a ) .  The six dominos generating perimeters of the 
triangular lattice. 
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bond percolation problems, the perimeters are generated as a domino game. The 
dominos are the polygons (P , )  of the L D  lattice and the perimeter generators are 
represented by two successive arrows b,-l and b, on lattice L. 

Figure 11 ( a )  represents the cluster perimeter generators of the bond percolation 
problem on the honeycomb lattice. Figure I l ( b )  represents the dual problem, i.e. the 
cluster perimeter generators of the bond percolation problem on the triangular lattice. 

The growth rules are the following. The polygons are associated as in the site 
problem, {bo,  b ] } ,  . . . , { b n - l ,  b ,}{b, ,  b n T l } ,  . . . , i n  such a way that each polygon side can 
at most wear two opposite bonds 6, and b, = -b , .  Such a walk, a set of { b , }  vectors, 
is not strictly self-avoiding because a step can possibly be visited two times, but 
nevertheless belong to the same universality class. As in the site percolation case 
(Rosso et a1 1985) if one considers the double frontier of the ‘infinite’ cluster in the 
gradient percolation problem, it is easy to show that this frontier is located at p c  and 
that the relation 

p:Ond( L )  + p : O D d (  L D )  = 1 

holds (Sykes and Essam 1964) and its fractal dimension is expected to be dH =:. The 
bond percolation case in fact belongs to the general class of ‘squig fractal constructions’ 
defined a few years ago by Mandelbrot (1984), with the particular building rule we 
gave above. 

It is interesting to show the correspondence with the site equivalent problem. For 
instance, we have shown in figure 4(a) the lattice site problem isomorphic to the bond 
problem on the square lattice. We show in figure 12 the corresponding bond problem. 

Appendix 2. Approximate evaluation of the percolation threshold 

An approximate calculation of p c  consists in supposing the DSAW as a pure random 
walk without self-avoidance and that at the percolation threshold there is an equal 

Figure 12. The  bond percolation problem (here  with the same distribution as in figure 4 
(01) is related to four self-dual dominos (not  represented).  The two lattices L ( - - - I  and  
L’ I-) a r e  the same so that p ,  =$. The  bonds (-) have been chosen at the same 
positions as  the sites ( 0 )  i n  figure 410). The bonds (-1 corresponding to the sites (0) 
are the bonds of the dual lattice L D .  
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probability to turn right or  left. This case is easily calculated and  leads to the following 
equations: 

for the triangular lattice p :  =; and p :  = 0.5. 

for the square lattice p : 2 + p :  = 1 and  p :  = 0.618. 

for the honeycomb lattice p : 4 + p : 3 + p ; * + p : = 2  and p :  = 0.741. 

The deviation from the exact values increases with the asymmetry between the matching 
pairs and  one shows that self-avoidance reduces this asymmetry. 

An interesting remark, due  to M Rosso, concerns the use of the ratio NfA/( NtA + NfB) 
which we showed to converge to p c  when the length N of the walk goes to infinity. 
In this expression NfA ( N t B )  is the total number of A sites ( B  sites) on the walk after 
N steps. If the DSAW was a pure random walk, without constraints, the above ratio 
would be directly given by an  average on the new sites created by a set of generators. 
This corresponds to replacing NfA by NiA = N(SN,,) (and equivalent relations for B ) .  
It is remarkable that the corresponding values give a quite good approximation of p c .  

Table 2. 

~~ ~ 

Triangular Square Honeycomb Kagome 

1 3 2s 10 

I 

- PSpprox = NiA,’( N j A  + N;B) 2 5 14 311 
- 

P C  I 0.5928.. . 0.698. ,  . 0.6527, .  . 
Difference 0 0.007 0.016 0.0052 

The best approximate values are obtained with the last method. They are shown 
on table 2 and again self-avoidance reduces the asymmetry so that p2pprox 3 p c .  

This means that, for simple lattices, p c  is approximated by pzpprox = ( z  + 2 ) / ( 3 z  - 2 )  
where z is the coordination number. This expression is also valid in 1 D ( z  = 2 ,  p c  = 1) 
but not in 3 ~ .  
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